	Name:
	Date:
Chemical Reactions: Lesson 1 – Chemical Equations	Block:
Chemical Equation: an equation that sh	ows important details
OF a chemical reaction Ex.	
Numerical Coefficient (2) $H_{2(g)} + O_{2(g)} \rightarrow (2)$ Reactants	H ₂ O _(g) (g) Gas (aq) Aqueous (has been dissolved in
Types of Equations: Sentence Equation Mydrogen gas reacts with oxygen	n gas to form Water
Word Equation Hydrogen gas + Oxygen gas -	-> Water
Skeleton Equation $H_2 + O_2 \longrightarrow H_2O$	
Balanced Equation 2 H ₂ + O ₂ -> 2 H ₂ O	Atom: single element Ex. O or K Molecule: group of atom Ex. H ₂ O or Br ₂

Law of Conservation of Mass:

- · In a chemical reaction atoms are neither (rected or
- dectroyed, only Chemical bonds change.

 The # of each type of atom is the Same on both the readants side and the product side.

Polyatomic- If there are brackets apply the subscript to each element in the brackets. Ex. $Ca_3(PO_4)_2$

3 Ca, 2 P, 8 O

2H2 + 02 -> 2H20

Diatomic Elements: Elements that on their own always

pair up with themselves ('magic 7" or upsidedown

Ex. Hydrogen

hockey Stick"

Hydrogen

Oxygen **F**luorine

Bromine

odine

Nitrogen

Chlorine

You Triescharts Products

1) 3H₂ + N₂ → 2NH₃

a) List the name of the reactants.

hydrogen gas, Nitrogen gas

c) How many molecules of hydrogen (H₂) will combine exactly with one molecule of nitrogen (N₂)?

b) Give the formula for the product.

NHz

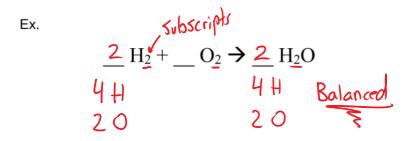
2) List the total number of each type of atoms in the following reactants.

a) $2H_2O + 2NaF$

H-4 Na-2 0-2 F-2

 $3Br_2 + 2FeI_3$

d) $2K_3PO_4 + 3(NH_4)_2SO_4$


Name: ______

Chemical Reactions:

Block: _____

Lesson 2 – Balancing Chemical Equations

ane both sides of the equation

Use the coefficients to balance the equation.

Do NOT change the subscript!

- Hint 1: Find an element that is unbalanced.
- Hint 2: Place a coefficient on each side to balance that element.
- **Hint 3:** Place one coefficient at a time, then recalculate.

Ex.
$$\underline{H}_2 + \underline{Cl}_2 \rightarrow \underline{2} HCl$$

 $2H$ $2H$ $2Cl$ 3 balanced!

Ex.
$$3 H_2 + 2 NF_3 \rightarrow N_2 + 6 HF$$

 $6H$ $6H$ balanced
 $2N$ $6F$

Hint 4: When faced with many unbalanced elements start with one that is in compounds on both sides (not by itself).

Hint 5: When faced with coefficients that would have to be fractions, multiply the existing coefficients by two.

Hint 6: If a polyatomic ion appears on both sides, treat it as a single unit. You don't need to but it does simplify stuff.

Ex.
$$C_2H_5OH + 3 O_2 \rightarrow 2CO_2 + 3 H_2O$$

2 C
6 H
7 O
7 O

Ex. $C_2H_5OH + 3 O_2 \rightarrow 2CO_2 + 3 H_2O$

2 C
6 H
7 O

Hint 7: For combustion equations start with carbon, then hydrogen, finally oxygen.

You Try: Balance the following skeleton equations.

1)
$$\underline{2}$$
 Fe + $\underline{3}$ Br₂ \rightarrow $\underline{2}$ FeBr₃

2)
$$\frac{3}{5} \operatorname{Sn(NO_2)_4} + \frac{4}{1} \operatorname{K_3PO_4} \rightarrow \frac{12}{12} \operatorname{KNO_2} + \sum_{n_3 \in PO_4} \operatorname{Sn_3(PO_4)_4} - \operatorname{treat} \operatorname{poly atomic} \operatorname{AS}$$

Hent 5; double coefficients if decimal/fraction is involved textback pg 131-133

3) $\frac{2}{5} \operatorname{C_2H_6} + \frac{3}{5} \operatorname{O_2} \rightarrow \frac{4}{5} \operatorname{CO_2} + \frac{5}{5} \operatorname{H_2O}$ for help