DAY 6 Compound Interest class notes
Compound Interest when interest earned is added to initial principle and onto interest earned up to that point
Compounding Period Period of time for which interest is calculated

For example, if the interest rate is compounded:

- semi-annually, there are 2 compounding periods per year.
- quarterly, there are 4 compounding periods per year.
- monthly, there are 12 compounding periods per year.
- daily, there are 365 compounding periods per year.

Days to Years:

$$
\begin{aligned}
& \text { to Years: } \\
& \text { Ex. } 90 \text { days } \rightarrow \text { years? } \frac{90}{365 \text { days }}=0.25 \text { years }
\end{aligned}
$$

Months to Years:

$$
\begin{aligned}
& \text { the to Years: } \\
& \text { Ex. } 18 \text { months } \rightarrow \text { years? } \frac{18 \text { months }}{12 \text { month }}=1.5 \text { years }
\end{aligned}
$$

How many rows (on a moet) would there be an a compound interest

aw Math 11
EXAMPLE 1 Creating a Compound Interest Table
Calculate the value of an investment of $\$ 5000.00$ that earns interest at a rate of 3% per annum, compounded semi-annually, for 2 years.
$\leftrightarrow 2$ times a years
Use the table below to show the value of the investment at the end of each compounding period.

Assign meat:

$$
\mathrm{m}_{\mathrm{mg}}^{\text {mont. }} 10-13
$$

AWMath1

DAY 6 Compound Interest assignment

1. a) Use a table to show how much a deposit of $\$ 10000.00$ invested at 2% per annum compounded annually for 3 years would be worth at the end of each compounding period.

INTEREST TABLE			
Interest period	Investment value at beginning or period	Interest earned $(I=P r t)$	Investment value at end of period

b) Use a table to show how much a deposit of $\$ 10000.00$ invested at 6% per annum compounded annually for 3 years would be worth at the end of each compounding period.

INTEREST TABLE			
Interest period	Investment value at beginning or period	Interest earned $(I=P r t)$	Investment value at end of period

AWMath1

c) Use a table to show how much a deposit of $\$ 10000.00$ invested at 2% per annum compounded monthly for 4 months would be worth at the end of each compounding period.
$r=\ldots \quad t=$

INTEREST TABLE			
Interest period	Investment value at beginning or period	Interest earned $(I=P r t)$	Investment value at end of period

d) Would you rather choose an investment that compounded yearly or daily? Explain your answer.

AWMath 11

2. Use a table to show how much a deposit of $\$ 3000.00$ invested at 3.25% per annum compounded quarterly for 1.5 years would be worth at the end of each compounding period.

INTEREST TABLE			
Interest period	Investment value at beginning or period	Interest earned $(I=P r t)$	Investment value at end of period

AWMath1

3. Use a table to show how much a deposit of $\$ 2500.00$ invested at 1.25% per annum compounded semi-annually for 3 years would be worth at the end of each compounding period.

INTEREST TABLE				
Interest period	Investment value at beginning or period	Interest earned $(I=P r t)$	Investment value at end of period	

