AW Math 11

DAY 7 Compound Interest class notes

To find the total value using compound interest:

$$\underline{A} = P\left(1 + \frac{r}{n}\right)^{(nt)}$$

- A is the final value of the investment (principal plus interest)
- P is the principal (amount invested)
- r is the annual interest rate (expressed as a decimal)

n is the number of compounding periods in a year

t is the term of the investment (in years)

Ex.
$$6 \mod 5 = 0.5 \text{ years}$$

EXAMPLE 1 Comparing Simple Interest and Compound Interest

- a) Calculate the interest you would earn from \$1000.00 deposited in an account that pays 4.00% interest per annum compounded annually if you left it for 20 years. →n=1
- b) Compare this to what you would get with simple interest at 4% per

b) Compare this to what you would get with simple interest at 4% pannum, also invested for a 20 year term.

4) Compared
$$(n*+)$$
 $A = P(1+\frac{1}{n})$
 $A = P(1+\frac{1}{n}$

EXAMPLE 2 Calculating Compound Interest

Calculate the final value of a deposit of \$1000.00 invested at a rate of 2.80% per annum for 4 years, with the following compounding periods:

a. semi-annually
$$A = 1000 (1 + \frac{0.028}{2})$$
 $A = 1000 (1 + \frac{0.028}{2})$
 $A = 1000 (1.014)^8 \rightarrow 1.014 \times 9 = 1.117$
 $A = 1000 (1 + \frac{0.028}{12})$
 $A = 1000 (1 + \frac{0.028}{12})$
 $A = 1000 (1.0023)^{48}$
 $A = 1000 (1.0023)^{48}$
 $A = 1000 (1.0023)^{48}$
 $A = 1000 (1.0023)^{48}$

DAY 7 Compound Interest assignment

- 1. Calculate the final value of a deposit of \$5000.00 invested at 3.00% per annum, compounded annually, for 2 years.
- 2. Calculate the difference between the final values of the following two investments after 3 years:
 - \$4000.00 invested at 3.50% per annum, compounded annually
 - \$4000.00 invested at 3.50% simple interest

3. Calculate how much **interest** you would earn on a deposit of \$8000.00 invested at 2.50%, compounded annually, for a term of 5 years.

AW Math 11

4.	4.00% per annum for 8 years, with the following compounding periods:		
	a. annually	b. monthly	
5.	Calculate the final value compounded quarterly, for	of a deposit of \$3500.00 invested at 1.75% per annum, or 4 years.	
6.	Calculate the final value compounded semi-annua	of a deposit of \$4500.00 invested at 2.5% per annum, ally, for 5 years.	
7.	Calculate the final value of compounded daily, for 10	f a deposit of \$2000.00 invested at 3.50% per annum, years.	
8.		st will you earn on an investment of \$10 000 deposited at e year, if it compounds daily versus annually?	

AW Math 11

9.	Calculate the difference between the final values of the following two investments after
	5 years:

- \$3000.00 invested at 2.75% per annum, simple interest
- \$3000.00 invested at 2.5% per annum, compounded semi-annually

- 10. An investment offers a rate of 2.80% per annum, compounded annually.
 - a. Use the Rule of 72 to determine how long it will take for the value to double.
 - b. Use the number of years found in (a). Plug into the compound interest formula using an investment of \$1000. Compare results of (a) and (b).
- 11. Ryan has a \$1000.00 investment that offers an interest rate of 2.50% per annum, compounded monthly.
 - a. If he invests it for 5 years, how much will the investment be worth at the end of the term?
 - b. Approximately how long will it take for his investment to double in value?

17