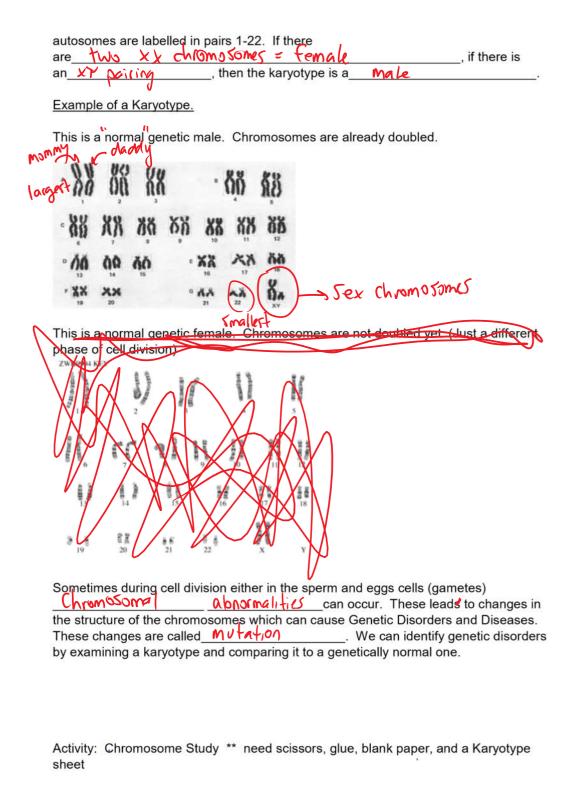
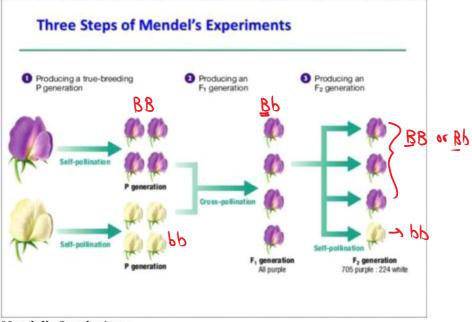

Printout


April 1, 2019 11:50 AM

Genetics: Lesson 1 – DNA	Name: Date: Block:
genetic info	di : DNA is a molecule that carries ormation of a Double Helix, or a twisted ladder.
U.S. National Library of Medio DNA Bases:	Chemical Model (don't know) Adenine Thymine Guanine Cytosine deoxyribose backbone Sugar phosphate backbone Olovyri pose Guanine Cytosine of the cytosine

	Name:
	Date:
Genetics: Lesson 2 – Genes	Block:
trait (eg height). Genes so Proteins. Proteins are the	that determines a certain sell out instructions for making building blocks EVERYTHING. each gene for every characteristic:
Allele: is one "Variant" Of a gene Eg Allele for "Short" Allele for Tall Little linger straig	ear lobe hangs free Darwin's point front teeth close together ser lobe attached point to front teeth with a definite gap
Trait: Characteristic: eye	code to describe trail)
Sphenotype: observable trait!	blue eyes, Tall/short
DNA	
•	ele for brown eyes
for eye colour	



Lesson	4: Heredity and Gregor Mendel Date	
	s is a field of biology that studies HEREDITY, which is the POTTY	J
	have been doing genetics experiments for thousands of years that i	nvolved
growing	g and raising food crops such as wheat and corn, cows, pigs and cor	npanion
animals	s like horses and dogs.	
	860's, Gregor Mendel, an Austrian monk, made the first discoveries	
He used	pea plants in his experiments and cross-pollinated them - this me	ans he
took a r	nale gamete from one flower and combined it with a female gamete	e of a
differer	<u>at flower</u> from a different plant. This allowed Mendel to control wh	ich plants,
with ce	rtain traits, were producing offspring.	
Mendel • s	started with pea plants with Purple flowers and on White	es with
• 7	when purple flowered plants self-fertilized, they only produced pur	ple
f	lowers and when white flowered plants self-fertilized, they only pr	oduced
,	white flowers (these types of plants are called	
_	plants	
•]	Mendel decided to breed purple flower plant with white flower p	lant
• 1	All the offspring from this cross are called first generation	OR
	and they were ALL PURPLE FLOWERS . Mendel wonder	
i	happened to the white flower trait???	
•]	He then allowed these F1 plants to self-pollinateResult he called	
-	Second generation OR the 52. He obs	erved that
	the white-flower trait reappeared in some of the flowers and the re	

purple

After hundreds of experiments, he saw a pattern in the F2 of a ratio of approximately 3:1 3 purple: 1 white

Mendel's Conclusions

- had 2 factors (Alleler) that act set of instructions for each trait
- donates one of these allels 2.
- may DOMINATE 3.

Dominant and Recessive Alleles text p. 28

Certain alleles for a given trait may be DOMINANT or another allele for the same trait. This means that if an individual has two or even just one dominant allele, then they will have the dominant trait

The trait that is associated with the RECESSIVE allele will only be observed _____

the individual carries 2 recessive alleles

GENOTYPE	BB	Bb	bb
PHENOTYPE	Perple	Purple	White

Homozygous Genotypes: If the alleles are identical eg BB, bb, TT, cc

a) homozygous Dominant: BB,TT

b) homozygous Recessive: bb,cc

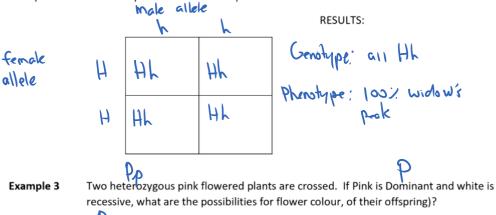
Heterozygous Genotypes: Two different alleles for a trait eg Bb, Tt, Cc
*** heterozygous genotype produces the dominant trait

TEXTBOOKS

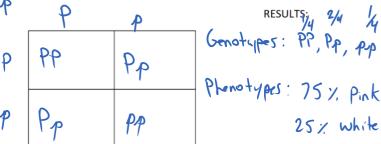
ACTIVITY: Dominant vs Recessive Trait? p. 30

Ear lobr Parting Ability # people for whom PTC was bitter of congin # people for whom PTC nas not butter A Total number of people surveyed Percent of people for whem it was bitter dardling DOMINANT??? Percent of people for Whom it wasn't RECESSIVE??? FRECKLES IN OUR CLASS # people with freckles # people without Total number of surveyed Percent of people with DOMINANT??? freckles Percent of people without freckles RECESSIVE???

V.


Lesson 5 Introduction to Punnett Squares			Date		
lf you flip	a coin ten times,	what is the prob	hat a given event pability that it will land on tails schromosomes? 50/50	each time?	50%
			rama vs papa		
A genetic produce Poc	c cross is any type offspring that car	of deliberate bre ry the genes of ex- trait Cross Parents Cametes (eeding between a genetic male ach parent. When the parents that is being studied, the cro	s DIFFER in)ne
crosses. • T • N	Tf TSQUARE: a diagonal They are used to incorrents	ram used to show	w the probability of inheritand Genotypes of the offspring, giv e possibility of each genotype	ven the genotyp	oes of the
heterozy		female horse is o	air (B) is dominant to the allele crossed with a <u>red haired</u> male		
			e?_Bb Genotype of	the male?b	<u>b</u>
t Results o	o) Parental cross f cross: Nak	: Rb	x bb Genotyp		what we see Phenotype: Block hair
B	86	Bb			red hair
Ь	bb	bЬ	pp pp		
			2 boxes are Bb	50% of	black hair
			2 boxes are bb	20% of	Len. Limit

Female Allele


Example 2: A male with the recessive trait of straight hair (h) is crossed with a female that has the homozygous dominant (H) genotype for Widow's peak.

a) What is the genotype for the Male? ____ The female? H

b) Draw a Punnett square that shows the possibilities for their children.

P

Activity:

- 1. YOUR GENES COMPLETE THE WORKSHEET AS INDICATED
- 2. CELEBRITY MATCH MAKING
- 3. BIKINI BOTTOM GENETICS the love life of Sponge Bob, Patrick, Squidward and Mr Krabbs